第七十九幕.极坐标论文(2 / 2)

加入书签

这很明显是一篇数学方面的论文。

正如莱纳所了解到的,数学方面的论文数量极少,因为不会发生反馈,加之大部分的数学理论都只不过是简化计算而已,所以专门研究数学并且发表论文的人少之又少。

即便是法则系的伊萨里斯.艾伯顿阁下当年的微积分论文,也不过是为了描述他所确立的运动学三大定律的附属章节而已。

更重要的一件事是,由于数学不会引起世界的反馈,自然也不会导致认知崩溃,莱纳这一篇论文可以说是安全无害。

“幸亏是数学方面的论文。”

奥布放下心来,拿起了这一份被可乐弄脏的论文。

“不过,新的坐标系?”

在翻开之前,奥布微微皱眉。

众所周知,安德尔.卢瓦尔阁下提出的卢瓦尔直角坐标系是目前最广泛采用的坐标体系,在众多法术模型中的应用已经得到了肯定,想要提出一种全新的坐标系,就要面临坐标转换的问题,如何推广是个难题。

奥布带着疑问翻开了莱纳的论文,一如既往的工整的格式让这位一丝不苟的法阵学法师颇为满意,不过当他看到莱纳设立的极坐标时,他沉默了。

以角度和半径作为变量,很明显,这种坐标系更适合描述曲线方程,奥布想到,他继续往下阅读,越来越觉得这个坐标系似乎更适合一些特殊的法术模型。

“离心率,曲线方程的统一?”

当奥布读到莱纳推导几种常见曲线的极坐标方程时,这位法师的双手竟然微微有些颤抖。

因为最后莱纳得到的方程是如此地简洁而优雅,充满着一种和谐的美感。

这正是奥布这样的法师所追求的,以最为简洁的方式来构筑法术模型,最大化利用魔力!

放下论文,奥布没有急着写评审意见,他拿起了计算用的法阵,开始验证论文的内容,当他看到随着离心率的变化,整个曲线也如论文所描述的那样改变时,这位法师站了起来。

“这、这太美妙了!”

奥布喃喃自语道,他又急忙坐下,拿起了纸和笔,开始对正在困扰自己的几个法术模型进行极坐标换算。

时间过得很快,等到奥布抬起头来,已经是夕阳西下,他发现,极坐标在特定的法术模型中,具有天然的优势,在另一些法术模型中则更为繁琐,如果和原本的直角坐标系互补,那么许多过去被认为是难以简化的法术模型,都能够进一步优化。

对于高阶法师而言,这种优化没什么意义,不过是微不可查的施法效率提升,但对于中阶法师与低阶法师来说,这样的优化已经相当难得,至少从奥布手上的这几个法术来看,中阶法师的施法效率提高了百分之十到百分之二十,低阶法师则更多!

奥布还沉浸在计算之中,他的眼角偶然瞥见了之前一直搁置的有关运动学三大定律的书籍,微积分对于他这种中阶法师而言实在太难理解,其中的计算过程更是超越了常识且十分繁琐。

他突然有了一个大胆的想法,如果将极坐标应用到微积分之中,会是怎样的结果?

↑返回顶部↑

书页/目录